
www.akajlm.net

In this post we'll be building a node application in

Typescript that will be deployed to a lambda function in

Amazon Web Services (AWS). Lambdas are used for a

variety of tasks and can be written in popular programming

languages like C#, Go, Java, Python, and even PowerShell.

AWS offers node in a few versions, and for this post we'll be

targeting the latest version which, as of this writing, is 8.10.

There are many good reasons to create a node project in

typescript, and there are certainly other options out there,

like using , but this post assumes the

reader is aware of these other options, has weighed the pros

and cons, and is interested in this stack. To give a quick

background for my reasons, it's a great option for teams who

work regularly on an Angular project and want to transfer

their typescript skills and knowledge to the backend with

lambdas written in the same language as Angular.

If it's not already installed, go ahead and get the latest node

and npm versions installed, which at the time of this post,

node 10.13.0 and npm 6.4.1 are available. With that done,

let's get started!

babel (https://babeljs.io/)

Scotch.io is shutting down January 2022. It's been

a great ride. Thank you for reading.

Follow our founder @chris__sev for more

adventures. (https://twitter.com/chris__sev)

https://babeljs.io/
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=twitter
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=facebook
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=reddit
https://twitter.com/chris__sev

Table of Contents

Create a new directory named hello-ts-lambda, switch

into that directory, and initialize the node project with

npm init -y . The package.json can be edited to look

something like this:

Project Setup

Typescript Configuration

Hello World

Lambda Entrypoint

Conclusion

Project Setup#

{

 "name": "hello-ts-lambda",

 "version": "0.1.0",

 "description": "A simple typescript node

 "scripts": {},

 "keywords": ["node", "typescript", "lamb

 "license": "ISC"

}

JSON

https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=twitter
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=facebook
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=reddit

Now to convert it into a typescript project.

Install typescript globally so it can be referenced in the CLI

by running npm i -g typescript . With that installed globally,

tsc -v should output Version 3.1.6. Initialize typescript in

the project by running: tsc --init . This will create the

tsconfig.json file that will control language features,

modules, transpilation, relative pathing, etc… To learn more

about these configurations, check out the

. The created file will target es5, commonjs modules, enable

strict, and turn on esModuleInteropm plus have other

options in the JSON file commented out (which is not valid

json, but typescript doesn't seem to care).

Let's modify this config to look like this:

Typescript Con�guration#

typescript docs (https://www.typescriptlang.org/docs/handbook/tsconfig-

json.html)

https://www.typescriptlang.org/docs/handbook/tsconfig-json.html
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=twitter
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=facebook
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=reddit

Awesome! ...but what does it all mean? Let's look at the key

options.

»

{

 "compilerOptions": {

 "target": "es2017",

 "module": "commonjs",

 "outDir": "./dist",

 "strict": true,

 "baseUrl": "./",

 "typeRoots": [

 "node_modules/@types"

],

 "types": [

 "node"

],

 "esModuleInterop": true,

 "inlineSourceMap": true

 }

}

JSON

https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=twitter
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=facebook
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=reddit

"target" : specifies the ecmascript version to target,

which determines the language features to support.

The node version in lambda we're targeting is 8.10 and

it supports most of the es2017 features.

»

"module" : This specifies the module system to transpile

to. In node, that's going to be commonjs.

»

"baseUrl" : Base directory to resolve non-absolute

module names

»

"typeRoots" : List of directories that contains type

definitions. This is for installing npm @types/* from

the DefinitelyTyped project for providing strong typing

(giving us intellisense) to popular npm packages.

»

"types: : This tells typescript what declaration files to

include in compilation, in our case, we want to be able

to access node features like process.env and the like.

Well configured IDEs may be seeing an error in the

tsconfig.json file at this point. Something to the extent of

[ts]** Cannot find type definition file for 'node'.** What's

going on? Well, the config file has defined node as a type in

the types section but we have no type definition files

https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=twitter
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=facebook
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=reddit

defined anywhere, so let's install them with

npm i -D @types/node .

After that's installed, ideally, that error should go away, but

some IDEs may require a restart.

Let's get a simple hello world working. Create the directory

and file ./src/index.ts . Now to spit out "Hello World" into

the console add:

To run it, execute node src/index.ts . Wait! How can we run a

node command on a typescript file!? This is madness! No,

this is typescript, a superset of javascript. Any valid .js file

should be able to be renamed to .ts and it still be able to be

executed using the node command. Let's try adding some

strong typing and see what happens.

Hello World#

console.log('Hello World');

TYPESCRIPT

https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=twitter
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=facebook
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=reddit

We should see an error like this:

Node doesn't understand the unexpected colon placement,

and even if it did, the string keyword would throw it off. At

this point we need to transpile by simply running tsc . In

our tsconfig.json file, the outDir was defined to output

transpilations to the ./dist directory, which should now be

var hw: string = 'Hello World';

console.log(hw);

TYPESCRIPT

(function (exports, require, module, **filenam

SyntaxError: Unexpected token :

 at ...

 ...

https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=twitter
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=facebook
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=reddit

created with an index.js file in it. Running

node dist/index.js will now spit out Hello World into our

console again, but this is cumbersome to do every time.

Enter ts-node.

With that installed globally (npm i -g ts-node), run the

command ts-node src/index.ts It will handle the

transpilation on the fly and then execute the command to

spit out our Hello World output once more.

Now that we have a working node/typescript project, let's

configure that src/index.ts file as an entry point for a

lambda. Looking at the

, it explains how lambda will invoke the code on the handler

object.

Lambda Entrypoint#

AWS documentation on a lambda handler written in node

(https://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-model-

handler.html)

https://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-model-handler.html
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=twitter
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=facebook
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=reddit

"If you are using runtime version 8.10, you can include the

async keyword:"

And that's what we're after, so let's update our src/index.ts

file to look like this:

exports.myHandler = function(event, contex

 // or

 // callback("some error type");

}

JAVASCRIPT

exports.myHandler = async function(event,

 ...

 // return information to the caller. }

JAVASCRIPT

https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=twitter
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=facebook
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=reddit

Run the tsc command and let's look at our output

dist/index.js file:

export const handler = async (event: any =

 console.log('Hello World!');

 const response = JSON.stringify(event,

 return response;

}

TYPESCRIPT

"use strict";

Object.defineProperty(exports, "__esModule

exports.handler = async (event = {}) => {

 console.log('Hello World!');

 const response = JSON.stringify(event,

 return response;

};//# sourceMappingURL=data:application/js

JAVASCRIPT

https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=twitter
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=facebook
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=reddit

Comparing that to the AWS docs of what it expects, we see

the async method signature that we're expecting:

exports.handler = async (event) => { … };

Awesome! Does it really work though? Let's try it out! In the

CLI run ts-node and follow the along with the commands

below:

> import { handler } from './src/index';

{}

> handler().then(r => console.log(r));

Hello World!

Promise {

 ...

 }

> {}

> handler({ foo: 'bar' }).then(r => console.lo

Hello World!

Promise {

 ...

 }

> {

 "foo": "bar"

}

https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=twitter
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=facebook
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=reddit

We imported the handler function and did a simple

execution of it. Note that async functions have to return a

Promise, so in this example we're accessing the return value

within the then callback. We could do something like this

though:

> (async () => {

... const result = await handler({ foo: 'bar'

... console.log(result);

... })();

Hello World!

Promise {

 ...

 }

> {

 "foo": "bar"

}

https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=twitter
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=facebook
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=reddit

At this point we can see it working locally, now let's zip up

the dist/index.js file and upload it to a lambda. Looking to

the

, there are detailed instructions for how to do this. Here's a

screenshot of the uploaded index.js file's code:

Create a new test event:

AWS docs (https://docs.aws.amazon.com/lambda/latest/dg/nodejs-create-

deployment-pkg.html)

https://docs.aws.amazon.com/lambda/latest/dg/nodejs-create-deployment-pkg.html
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=twitter
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=facebook
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=reddit

and here's the output:

https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=twitter
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=facebook
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=reddit

www.akajlm.net

In this post we created a node project from scratch,

initialized typescript, wrote a simple hello world file, and

uploaded the output to a lambda function. These are the

basic building blocks to get this project working. From here

the project will need some testing added, code coverage

configured, linting, automation setup in scripts for CI/CD,

and other finishing touches that I hope to cover in future

posts.

Feel free to leave a comment if something wasn't clear or to

provide any other kind of feedback.

Conclusion#

https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=twitter
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=facebook
https://scotch.io/@nwayve/how-to-build-a-lambda-function-in-typescript?utm_source=scotch&utm_campaign=share&utm_medium=reddit

